

Solar thermal Integration into industrial Processes

Christoph Brunner

c.brunner@aee.at

AEE - Institute for Sustainable Technologies (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 AUSTRIA

Energy Audit Methodology

10 Audit steps

PRE – AUDIT: STEP 3

EINSTEIN Step 3: Ppreparation of audit. Processing of preliminary information

> process pre-audit data

> call the company to check data

> compare with benchmark data

> learn about specific processes/companies

> identify possible measures

> fix priorities for audit

STEP 2.1: Pre-audit data acquisition

Preparation of the company

- \Rightarrow They should collect:
 - General situation of the company
 - Fuel and electricity bills
 - Description of the production process (flowchart with temperatures and mass flows)
 - Description of the different processes
 - Description of the heat and cold supply system
 - Description of the buildings, production halls and stores

Data should be sent to the auditor in advance

STEP 2.2: Pre-audit data acquisition

> Preparation of the auditor:

> Most relevant processes in the sector?

⇒ Which processes consume most energy?

> Existing options for process technologies?

⇒ What are their advantages and disadvantages?

For non-industrial sectors

 \Rightarrow Which aspects consume most energy

See EINSTEIN tool-kit for sources of information Study the flow sheet sent by the company

STEP 2.2: Pre-audit data acquisition

- General data
- Energy consumption
- > Heat supply equipments
- Machine house
- > Process description
- > Heat storages
- > Heat exchangers
- > Building

> fast check of new data

> take measurements

Ensure technical staff present> define measurement programUse EINSTEIN questionnaire as a guide

> discuss new understanding

General information:

- \Rightarrow Annual production
- \Rightarrow What processes? How do they run?
- ⇒ Activity figures (turnover, number of workers,...)
- ⇒ Shifts, holiday periods, production schedules...
- \Rightarrow Plans for the future?

> Fuel and electricity bills and energy tariffs:

- \Rightarrow Try to get information for several years !!!
- ⇒ Breakdown of consumption by
 - Processes
 - Equipment
 - Production lines

- > Data on processes:
- Often overall energy consumption is available, but not the breakdown by process - additional data is necessary
 - ⇒ Fluid/energy inflow and outflow
 - Volume or mass flowrate and temperatures
 - ⇒ Mass or volume to be heated at start-up
 - Number of batches or breaks, initial temperature from which equipment has to be heated
 - ⇒ Thermal losses of process equipment in operation
 - Power requirement of process to maintain given temperature may be composed of thermal losses, phase-change of working fluids, chemical reactions

> Data on heat and cold supply equipment

- ⇒ Get not only nominal power, but also operating hours, load factor, losses
- ⇒ Make a block diagram: which equipment supplies which process

> Data on heat and cold distribution and storage

⇒ Get data on length, diameter, insulation of pipes, temperatures, pressure levels, flow rates

• This helps to calculate the energy consumption

⇒ Identify heat storage: volume, temperature level, pressure, insulation, inlet and outlet flow rates

> Existing heat recovery systems

- ⇒ Identify existing heat exchangers for heat recovery (technical data, type e.g. plate HEX)
- ⇒ Estimate (typical) real operating conditions (flow rates, temperatures)

> There is no time to measure all data!!!

> Some hints for indirect calculations

- \Rightarrow Calculation of thermal losses:
 - From cool-down temperature and time
 - From approximate size and insulation thickness
- \Rightarrow E.g. in drying process calculate the heat for evaporation
 - From the difference of humidity in wet and dry product

> Renewable energies

- ⇒ Identify available area (roof and ground), distances and orientation
- ⇒ Assess availability of biomass or biogas (from processes or vicinity)
- \Rightarrow Is there any motivation for renewables besides economics?

> Building heat & cold demand

- ⇒ Make an inventory of existing buildings (offices, storage halls and production halls): heating systems and air-conditioning
- ⇒ Temperature levels and schedules of use
- ⇒ Sketches of buildings

Economic and financial parameters

- \Rightarrow Identify O&M costs
- ⇒ How are investments in energy supply financed (externally, internally, contracting)?
- \Rightarrow What are the requirements about pay-back or return rates?

EINSTEIN Step 5: on - site walk - through audit

Data acquisition: mass and energy flows

Sankey

ENERGY AUDIT: STEP 6

EINSTEIN Step 6: analysis of status quo

> consistency check of data

> estimate and/or acquire missing information

> breakdown of consumption

> real equipment performance

> comparison with benchmarks

EVALUATION OF ALTERNATIVES: STEP 7

EINSTEIN Step 7: conceptual design of saving options and preliminary energy targets definition

> check list of recommendations for potential energy savings

> process optimization and demand side opportunities

> analyse the theoretical heat recovery potential

> pre-design heat exchanger and storage network

> pre-design of alternative supply systems

Examples of technology optimization

www.amtechuk.com

EXTRACTION

BLEACHING

SURFACE TREATMENT

PAINTING

Schritt 3: Matrix of industrial process indicators

general description solar integration schemes Industry sectors Subsection DA food Subsection DB textiles Subsection DJ metals Subsection DG chemicals UNIT OPERATIONS INFO INFO INFO INFO INFO CLEANING info info x х х х DRYING info info x X X X EVAPORATION & DISTILLATION info info x x BLANCHING info info x PASTEURIZATION info info х х STERILIZATION info info х x COOKING info info х х OTHER PROCESS HEATING info х X X X GENERAL PROCESS HEATING info x X X х HEATING OF PRODUCTION HALLS info info x x x х COOLING OF PRODUCTION HALLS info x x COOLING PROCESSES info х х х MELTING info info x

х

х

X

X

X

х

X

Low temperature processes in various industry sectors

[edit]

info

info

info

info

info

info

Schritt 3:Sub Matrix of industrial process indicators

		matrix	101 1000 11000	., .	0000	mom	radon				_	- Lowing
		milk products	fruits/vegetables	sugar	beer	fats/oils	chocolate/cacao/coffee	starch/potatoes/grain mill products	wine/beverages	meat	fish	aroma
UNIT OPERATIONS	Typical processes	info	info	info	info	info	info	info	info	info	info	info
	Cleaning of bottles and cases	x	x		×	x			x	x	x	
CLEANING	Washing products		x	x		x		×	x	x	x	
	Cleaning of production halls and equipment	x	x	x	x	×	x	×	x	x	x	x
DRYING	Drying	х	x	х		x	x	x		x		
	Evaporation	x	x	x		x	x	×	x	x	x	
EVAPORATION & DISTILLATION	Distillation					x		×	x			x
	Deodorization					x	x	x				
BLANCHING	Blanching		x					x				
PASTEURISATION	Pasteurisation	x	x		x			x	x	x	x	
STERILIZATION	Sterilization	x	x					×	x	x	x	
COOKING	Cooking & boiling		x		x		x	x	x	x	x	
	Pre-heating	x	x		x							
	Soaking		x				x	s	x			
UTHER PROGESS HEATING	Thawing									×	x	
	Peeling		x									0
GENERAL PROCESS HEATING	Boiler feed-water preheating	x	x	x	x	х	×	x	x	x	x	x
HEATING OF PRODUCTION HALLS	Heating of production halls			x			x	x	x			x
COOLING OF PRODUCTION HALLS	Cooling of production halls	х	x						x	x	x	
	Cooling, chilling & cold stabilization	x	x	x	x	x	x	x	x	x	х	-
COOLING PROCESSES	Ageing	x						9. <i>(</i> 2	x			
MELTING	Melting	x				x	x		x			
EXTRACTION	Extraction		x	x		x	x		x			x
BLEACHING	Bleaching		-			x						
Temperature level												
20-40 °C		x	x		x		x		x			2
40-60 °C		x	x		x		x	9. (C	x	x		x
60-80 °C		x	x	x	x	x	x	x	x	x		x
>80°C		x	x	x	x	x	x	x	X;			х

Motivation and potentials

Process temperature levels of various industrial processes

Castan	Ducces				Те	emperatu	ire (°	C)			
Sector	Process	20	40	60	80	100	120	140	160	180	200
Soverel	Make-up water										
Several	Preheating					_					
sectors	Washing										
	Biochemical react.										
	Distillation										
Chemicals	Compression									-	
	Cooking										
	Thickening						1				
	Blanching			Ι		-					
	Scalding										
	Evaporating							-			
	Cooking										
Food	Pasteurisation				_			_			
POOU 8 hourseas	Smoking				_						
& beverages	Cleaning										
	Sterilisation										
	Tempering										
	Drying										
	Washing				_						
	Bleaching										
Demen	De-Inking										
Paper	Cooking										
	Drying										
	Pickling										
	Chromatiing				-						
	Degreasing					_					
Fabricated	Electroplating					-					
metal	Phosphating					-					
	Purging										
	Drying										
Rubber	Drying										
& plastic	Preheating										
Machinery	Surface treatment										
& equipment	Cleaning										
	Bleaching					_					
Tautilaa	Coloring										
Textiles	Drying										
	Washing					_					
	Steaming					-					
	Pickling										
Wood	Compression									-	
	Cooking										
	Drying								-		

Source: IEA SHC Task 49/IV 2013

 Muthstage bothe cleaning: (BAT in the Food, Drink and Milk industries, June 2005) The muthstage bothe cleaning is presented below.

Definition of streams

Heat sources and heat sinks in a company

cooled down

Definition of streams

Reduction of the primary energy demand by heat exchange

Definition of streams

> Enthalpie stream (sensible stream)

$$\dot{Q} = \dot{m} \cdot c_p \cdot \Delta T$$

- ⇒ cp specific heat capacity (kJ/(kg K))
- $\Rightarrow \Delta T$ temperature difference (K)

Data for calculation

⇒ Yearly operating hours for savings

• Q [kW] * h [h/a] = E [kWh/a]

- $\Rightarrow \mathsf{Energy} \ \mathsf{supply} \ \mathbb{C}/\mathsf{kWh} \ \mathsf{for} \ \mathsf{economical} \ \mathsf{calculation}$
- ⇒ Heat transfer coefficient for heat exchange calculation
- ⇒ Material for HX for investment calculation

Stream list

						relevant to						current
						production						energy
				Heat		(p) or					heat transfer	source /
		Start	End	Capacity		waste heat		specific heat	specific		coefficient of	cooling
number	Process name	Temperature	Temperature	Ср	Hot/Cold	(np)	mass flow m	capacity cp	enthalpy h	Enthalpy H	fluid α	medium
		[°C]	[°C]	[kJ/K.s]			[kg/s]	[kJ/kg.K]	[kW/kg]	[kW]	[W/m².K]	
1	Milchpasteur Erhitzung	65,00	74,00	41,10	Cold	р	10,90	3,77	33,93	369,87	2500,00	fossil gas
2	Milchpasteur Topfen Erhitzung	75,00	85,00	41,75	Cold	р	11,08	3,77	37,70	417,53	2500,00	fossil gas
3	Milchpasteur Kühlung	8,00	6,00	41,17	Hot	р	10,92	3,77	-7,54	-82,34	2500,00	electricity
4	Topfen Erwärmung Topferei	6,00	28,00	15,45	Cold	р	4,10	3,77	82,94	339,87	2500,00	fossil gas
5	Topfen Kühlung im Lager	28,00	4,00	2,29	Hot	р	0,8196	2,80	-67,20	-55,07	2500,00	electricity
6	Rohrahmkühlung	50,00	8,00	4,13	Hot	р	1,4330	2,88	-120,96	-173,34	2500,00	thermal
7	Rahmpasteur Erhitzer	90,00	111,00	3,30	Cold	р	1,147	2,88	60,48	69,35	2500,00	fossil gas
8	Rahmpasteur Kühlung	10,00	8,00	3,30	Hot	р	1,147	2,88	-5,76	-6,60	2500,00	electricity
9	Rahm WinterWT	8,00	21,00	12,66	Cold	р	4,395	2,88	37,44	164,55	2500,00	fossil gas

Aims of Pinch Analysis

AEE INTEC

- Visualization of the total cold- and heat demand of a system in one diagram
 - ⇒ energy demand of single processes
 - ⇒ at which temperature level the energy has to be supplied
- > Maximum of heat recovery
- Heat exchanger network combination of the process streams
- Be aware of existing piping systems and heat exchangers and the location of the buildings and processes

Definition

- energy anergy exergy
- > enthalpy: internal energy and pushing duties

> internal Energy depending from T:

 \Rightarrow DH = m×cp ×(T2 -T1)

- DH = enthalpy difference [J], [kJ]
- m = mass [kg]
- cp = specific heat capacity with constant pressure [J/(kg_K)]
- T2 = higher absolute temperature [K]
- T1 = lower absolute temperature [K]

⇒ power

$$\dot{Q} = \dot{m} \cdot c_{p} \cdot \Delta T$$

"Cold streams" need to be heated

Any process in which **energy input is needed** for heating the process flow/stream

"Hot streams" need to be cooled

Any process in which **energy input is withdrawn** for cooling the process flow/stream

Example 1 - Temperature-enthalpy profile

Heat up 47,8 kg/h water from 20 to 110°C

AEE INTEC

www.aee-intec.at AEE - Institute for Sustainable Technologies

Example 2

ALE INTEC

Heat up 636 kg/h water from 73 to 80°C

www.aee-intec.at AEE - Institute for Sustainable Technologies

Total waste heat for recovery - hot composite curve HCC

AEE INTEC Grand Composite Curve

Temperature Grid Diagram

for each stream

•Start temperature - 20°C

•Target temperature - 65°C

•Heat load: $m^*cp^*\Delta T = H [kW]$

Each stream is displayed as a line in the temperature grid diagram:

Heat exchanger designs

> Designer rules

- ⇒ Right temperature
- ⇒ Right power
- \Rightarrow No heat exchange above the pinch

> Heat exchanger calculation

- ⇒ Definition of temperature
- ⇒ Definition of enthalpy

> HEN criteria – cost savings

- ⇒ Maximal transfer with a minimum of investment costs
- Optimal thermodynamic use of streams under exergetic considerations

Advanced Pinch Tool - SOCO

ALE INTEC

Proposal

ocoProposal	Result									-
Propos	al HXs				Storage D	iagramme -	Ratio o	f mass flow in temper	ature regi	ions
Heat	ychange			*				100	_ 0	×
	Achidinge	8. <u> </u>								
HX nan	ne									
Storage				-	-				Greenster	
storage n	ame									
AP_HX_5	_0			velocity	port 0	velocity p	ort 5			
type	fix			0.08	m/s	0.13	m/s	insulation thickness top	22.7	cm
material	Copper	12			\frown			heat conductivity of insulation material	0.04	W/mK
numbe	r of ports	smaller						insulation thickness	23.38	cm
	volume	226.68	m ^a	6	storage			heat conductivity of insulation material	0.04	W/mK
	itial filling	14.08	m	r				wall thickness	0	mm
in	volume	oottom	m	port 1		port 6		heat conductivity of storage wall	0	W/mł
in	curved				\sim	velocity n	ort6	insulation thickness	18.7	cm
in st	ratified ch	arging 🗌		velocity	DOILI	voicenty p	0110	DOMOTH		

Simulation

leat ex	changes			Streams	refe	rence T. 0 °C	:	
name	transfer E. [kWh]	ratio per HX [%]	*	name	avg. T [°C]	energy value [kWh]	ratio per stream [%]	ſ
43	69512.5	7.1	8	65	140	484027.49	14.92	
259	101454	10.36	н	75	40	145622.4	<mark>4.4</mark> 9	
50	86737.69	8.85		89	48	158056.19	4.87	L.
57	163021.31	16.64		70	8	35180.31	1.08	
71	35998.24	3.67		85	6	19038.8	0.59	
97	120579. <mark>0</mark> 8	12.31		90	70	95521.94	2.95	
202	17853.37	1.82		108	70	222119.35	6.85	
162	22695.94	2.32		210	62.9	72367.44	2.23	
218	69521.88	7.1	4	198	12	23464	0.72	

Storages

StorageEix 1278.66 0.01
12/0100 0101
StorageFix 2431.26 0.02

Output streams (remaining energy demand)

name	direction	star T. ['	t ºC]	en [°C	d Т.]	remaining E. demaind [kWh]		
HX_ID_43	hot	20	.91	1	8	46985.42	. 1	
HX_ID_57	cold	8	0.6	81.5		3947.56		
HX_ID_97	hot	1	32		32	0		
HX_ID_109	cold	63	.68		70	20053.85		
HX ID 122	hot	66.43		60		22243.93	-	
utility demand	avg. T [°	c]	max. T [°	C]	min. [°C]	T energy [kWh]		
heating deman	d 60	.8	102			74257.23		
cooling demand	d 28.	.99			5	290127.96		

Simulation of storage and heat exchanger

ALE INTEC

Principles of system integration

Supply level

Process level

SOLAR.

- > Feed-in solar energy in heating circuit
- > High set temperature
- > Simple system integration
- Small number of system layouts

- > Different system layouts possible
- > Often complex system integration

SUPPLY LEVEL

PROCESS LEVEL

Direct steam

AEE INTEC Pre heating boiler feed water

serial integration at supply level with liquid heat transfer media

solar heating of product or process media with external heat exchanger General integration flow sheet (left) and illustrated by sterilization process with autoclave (right)

AEE INTEC

of intermediate hot water circuits with external heat exchanger General integration flow sheet (left) and illustrated by pasteurization process with multi zone plate heat exchanger and external heating zone (right).

bath, machinery or tank with external heat exchanger General integration flow sheet (left) and illustrated by scalding process for chicken slaughtering heated via direct steam injection (right).

solar heating of bath, machinery or tank with internal heat exchanger General integration flow sheet (left) and illustrated by curd vessel for cheese production heated with conventional heating jacket and additional solar driven dimple plates (right).

Subdivision of a solar process heat system exemplary for integration point

Storage systems

AEE INTEC

Description	Symbol	Equivalent system scheme
D – direct charging without heat exchanger	→+ ++	
E - external heat exchanger and charging pump (two different media in solar field and storage) Pros: collectors can be operated with glycol mixture Cons: single inlet height may damage stratification	+ []0]+	
EV - external heat exchanger and valve and charging pump. Inlet height in storage control by temperature (two different media in solar field and storage) Pro : simple design, robust, better stratification Pros: Cons:	+ - 0 +	
Less common concepts	-	
I - Internal heat exchanger (two different media in solar field and storage) Pros: Cons:	→ → → → → → →	
L - heating lance (stratification device) Pros: good stratification	→ <u></u> ←	

	Description	Symbol
•	No storage	
Wa	ater Storage	
•	Most common	
•	Stores sensible heat	
•	Can be operated up to 95 °C	
•	Can be easily stratified	
Pre	essurized Water Storage	
•	Stores sensible heat	
•	Can be operated above 95 °C	
٠	More expensive	
Ph	ase Change Material Storage	
•	Stores latent heat	
•	High heat capacity	
•	Optimal operating point depends on the materials phase change point.	
•	Highly expensive	
•	Prototype stadium	
So	lid State Storage	
•	Used for air systems	
•	High heat capacity	
•	Complicated heat transmission towards full charge state	

Description	Symbol	System scheme
 Direct discharge Storage medium is process medium Storage is integration point 	+ + ++	Conventional system
 Indirect discharging (two different media in solar field and storage) via internal heat exchanger (integration point) and discharging pump 		Conventional system
 Buffer storage and Batch preheating storage in parallel Pump forces circulation between storages Optimal for batch processes with high mass flow 	→ ● ● ● ● ● ● ● ● ● ●	Conventionl
E -Indirect discharge with three way valve two different media in solar field and storage via external heat exchanger(integration point)and discharging pump	+ 8 8 4	Conventional system
 Discharging via evaporator for pressurized storages evaporator is integration point 		Conventional system

EVALUATION OF ALTERNATIVES: STEP 9

EINSTEIN Step 9: Economic and financial analysis

> calculate main economic parameters

> assess possibilities of funding and financing

> elaborate an appropriate financing scheme

EINSTEIN Step 10: reporting and presentation to the company

> elaborate short-and-clean audit report

>present to the company

Follow-up From the audit to the installation of a new system

> Follow-up is as important as audit itself !

> Objective

- ⇒ Try to convince the company to realise the proposed investment and install new energy efficient systems
- ⇒ If your proposals are realised: compare your predictions with the real behaviour
- Learn also from negative responses: call and try to get information why your proposal was not realised

- Go through check list and collect company data
- > Fill in questionnaire
- > Draw flow sheet
- > Identify missing data
- Select important data
- Plan for missing data acquisition
- Process optimisation
- System optimisation
- Efficient and renewable supply

Solar thermal Integration into industrial Processes

Christoph Brunner

c.brunner@aee.at

AEE - Institute for Sustainable Technologies (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 AUSTRIA